SHORT COMMUNICATION

Norditerpenoid alkaloids from the roots of *Aconitum heterophyllum* Wall with antibacterial activity

MANZOOR AHMAD¹, WAQAR AHMAD², MANSOOR AHMAD², MUHAMMAD ZEESHAN¹, OBAIDULLAH³, & FARZANA SHAHEEN¹

¹H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan, ²Faculty of Pharmacy, Institute of Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan, and ³Department of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan

(Received 15 August 2007; accepted 25 September 2007)

Abstract

Two new aconitine-type norditerpenoid alkaloids 6-dehydroacetylsepaconitine (1) and 13-hydroxylappaconitine (2), along with three known norditerpenoid alkaloids lycoctonine, delphatine and lappaconitine were isolated from the roots of the *Aconitum heterophyllum* Wall. These compounds exhibited significant antibacterial activity. The structure of compound 1 and 2 were deduced on the basis of their spectral data.

Keywords: Norditerpenoid alkaloids, Aconitum heterophyllum Wall, antibacteria

Introduction

Genus Aconitum is a rich source of diterpenoid alkaloids, many of which exhibited a broad spectrum of biological activities. Lappaconitine hydrobromide has been used as an antiarrhythmic drug [1]. The methyllycaconitine perchlorate is used in curaremimetic preparation [2]. Some aconitine and mesaconitine derivatives possess potent analgesic and anti-inflammatory activities [3]. The methyllycaconitine and lycaconitine exhibited neuronal nicotinic acetylcholine receptor affinity [4]. Lycaconitine, obtained from several Aconitum species, was found to be effective against multi-drug resistance cancers. Aconitum plants are widely used in Chinese and Indian traditional systems of medicine [5-6]. Turkish Aconitum species are used externally in the treatment of rheumatic pain and sciatica and also against body lice [7].

Previously, heterophyllisine, heterophylline, heterophyllidine, heteratisine, atisine, atidine, F-dihydroatisine, hetisine, benzoylheteratisine and atisenol were reported from *A. heterophyllum* [8–11]. In the present paper, we describe the isolation and structure elucidation of two new antibacterial norditerpenoid alkaloids 6-Dehydroacetylsepaconitine (1) and 13-hydroxylappaconitine (2), along with three known alkaloids lycoctonine (3), delphatine (4) and lappaconitine (5).

Experimental

General experimental

Optical rotations were measured on a JASCO DIP 360 polarimeter. IR spectra were recorded on a JASCO 302-A spectrophotometer. EI-MS and HREI-MS were recorded on JMS HX 110 with data system and on JMS-DA 500 mass spectrometers. The ¹H- and ¹³C-NMR spectrums were recorded on Bruker NMR spectrometers operating at 400 MHz, (100 and 125 MHz for ¹³C). The chemical shifts values are reported in ppm (δ) units and the coupling constants (*f*) are given in Hz.

Chromatographic conditions

For TLC, precoated aluminium sheets (silica gel 60F-254, E. Merck) were used. Visualization of the TLC

Correspondence: M. Ahmad. H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan. Tel: 92 300 2308379. E-mail: manzoorhej@yahoo.com

plates was achieved under UV at 254 and 366 nm and by spraying with Dragendorff's reagent. Solvent system; "*n*-hexane-acetone-diethylamine 8:2:10 drops", was used.

Plant material

The roots (5 kg dry wt) of *Aconitum heterophyllum* Wall, were collected from District Swat of Pakistan at an elevation of 2000 m in August 2005 and identified by Mr Mehboob ur Rahman (Assistant Professor) Department of Botany, Jahanzeb Post Graduate College, Saidu Sharif, Swat, NWFP, Pakistan. The voucher specimen (HA-014) is deposited in the herbarium of the botany department.

Extraction and isolation

Dried and powdered roots (5 Kg) of the plant were extracted exhaustively with n-hexane which solvent extract *n*-hexane $(3 \times 8L)$ followed by 80% EtOH $(3 \times 10 \text{ L})$ extraction at room temperature for 7 days (3-times). The filtrate was evaporated in vacuo to yield 60 g of residue. The residue was acidified to pH 1.5 by $0.5 \text{ N H}_2\text{SO}_4$ and extracted with CH_2Cl_2 (3 × 2 L) collected alkaloidal mixture (18g). The acidic aqueous solution was basified (pH 8-10) by using 10%KOH and extracted with CH_2Cl_2 (5 × 2 L) to yield 13.8 g of crude acidic compounds fraction. The crude acidic compounds fraction was fractionated on silica gel column (260 g), five combined fractions were obtained. On repeated flash column chromatography using solvent system *n*-hexane-acetone-diethylamine (9:1:10 drops per 100 ml) 6-dehydroacetylsepaconitine (1), 13-hydroxylappaconitine (2), along with lycoctonine, delphatine and lappaconitine known alkaloids were obtained.

6-dehydroacetylsepaconitine (1), amorphous powdered (13 mg). mp 122–125°C; $[\alpha]_D^{30} + 23.33°$ (*c* 0.8, CHCl₃); UV (EtOH) λ_{max} (log ε) 310 (3.75), 254 (4.22), and 225 (4.46) nm; IR ν_{max} CHCl₃, 3492 (OH groups), 1700 (ester carbonyl, amide carbonyl), 1600, 1280, 1250, and 750 cm⁻¹ (1,2-substituted aromatic ring), 1083 (simple ether bonds); ¹H-NMR (400 MHz, CDCl₃): δ 1.17 (3H, t, $\mathcal{J} = 7.0$ Hz, N-CH₂CH₃), δ 2.82 (1H, br s, C-17), δ 3.85 (1H, t, $\mathcal{J} = 7.9$ Hz, C-1), δ 3.71 (1H, d, $\mathcal{J} = 4.8$ Hz, C-14), δ 2.45 (1H, br s, C-5) δ 2.11 (1H, br s, C-7), δ 3.24 (1H, t, $\mathcal{J} = 8.4$ Hz, C-16), δ 11.0 (NH). ¹³C-NMR (Table I). HREI-MS (M⁺m/z, 614.6828)

13-hydroxylappaconitine (2), amorphous powdered (10 mg). mp 145–147°C; $[\alpha]_D^{30} + 10.33^\circ$ (*c* 1.0, CHCl₃); IR ν_{max} CHCl₃, 3492 (OH groups), 1720 (ester carbonyl, amide carbonyl), 1608, 1270, 1255, and 790 cm⁻¹ (1,2-substituted aromatic ring), 1089 (simple ether bonds); ¹H-NMR (400 MHz, CDCl₃): δ 1.03 (3H, t, $\mathcal{J} = 7.0$ Hz, N-CH₂*CH*₃), δ 3.41 (1H, br s, H-17), δ 3.20 (2H, dd, $\mathcal{J} = 9.0$ and 6.0 Hz, H-1 and

Table I. ¹³C-NMR data of compounds 1 and 2 (CDCl₃).

	6-dehydroacetylse- paconitine (1)		13-hydroxylappaco- nitine (2)		
C. No	$\delta_{\mathbf{C}}$	Multiplicity	$\delta_{\mathbf{C}}$	Multiplicity	
1	77.7	СН	84.8	СН	
2	26.5	CH_2	26.7	CH_2	
3	31.6	CH_2	33.1	CH_2	
4	84.6	С	84.6	С	
5	44.4	CH	47.9	С	
6	206	С	27.2	CH_2	
7	46.8	CH	47.8	CH	
8	79.5	С	68.4	С	
9	79.6	С	79.2	C)	
10	78.9	С	43.8	CH	
11	55.7	С	53.1	С	
12	37.4	CH_2	35	CH_2	
13	34.5	CH	78.1	CH	
14	87.7	CH	87.4	CH	
15	44.7	CH_2	32.4	CH_2	
16	82.7	CH	82.2	CH	
17	61.5	CH	58	CH	
19	55.5	CH_2	55.8	CH_2	
1'	115.7	С	115.7	С	
2'	141.6	С	140.1	С	
3′	120.2	CH	120.3	CH	
4'	134.4	CH	134.4	CH	
5′	122.3	CH	122.3	CH	
6′	130.9	CH	131	CH	
N-CH ₂					
1	48.9	CH_2	49	CH_2	
CH ₃	13.4	CH_3	13.5	CH_3	
C=O	167	С	159.7	С	
N-C=O					
	169.3	С	168	С	
CH ₃	21.4	CH_3	25.2	CH_3	

H-16), δ 4.32 (1H, s, H-14), δ 2.45 (1H, br s, H-5), δ 2.35 (1H, br s, H-7), δ 8.68 and 7.92 (each 1H, dd, Ar-H) 7.50 and 7.04 (each 1H, t, Ar-H). ¹³C-NMR (Table I). FAB (+ ve and -ve) (M⁺m/z, 601.0 and 599.0).

Antibacterial activity

All of the isolated compounds were screened against strains of Escherichia coli, Bacillus subtilis, Shigella flexneri, Staphylococcus aureus, Pseudomonas aeruginosa, and Salmonella typhi. For antibacterial screening, 3 mg of sample was taken and dissolved in 3 ml of DMSO. Molten nutrient agar (45 mL) was poured on sterile petri plates, where it was allowed to solidify. Bacterial spread were made on these nutrient agar plates by dispensing 7 mL of sterile soft agar containing 100 µL of test-organism culture. Wells were dug with the help of a 6-mm sterile metallic borer at appropriate distance. Then, 100 µL of sample was poured into each well, and the plates were incubated at 37°C for 24 h. The results, in terms of inhibition zone, were noted. The drug Imipenem, a broad-spectrum β -lactam antibiotic, was used as a positive control.

Table II. Table-2 Antibacterial activities of compounds **1-5**. Relative to the standard drug Imipenem. For details, see Experimental.

Compound	EC	BS	SF	SA	PA	ST
Imipenem	30	33	27	33	24	25
1	_	15	12	24	_	15
2	10	15	10	_	13	17
3	11	16	15	15	17	17
4	_	12	_	15	16	18
5	_	15	15	_	17	17

Inhibition zones are given in mm. Abbreviations: EC, Escherichia coli; BS, Bacillus subtilis; SF, Shigella flexneri; SA, Staphylococcus aureus; PA, Pseudomonas aeruginosa; ST, Salmonella typhi.

As a negative control, DMSO was used. The results are summarized in Table II.

Results and discussion

6-dehydroacetylsepaconitine (1) was obtained as a white amorphous powdered, and was assigned the molecular formula $C_{32}H_{42}N_2O_{10}$, on the basis of HREI-MS (*m/z* 614.6828, calcd. 614.6834). The mass spectrum of 1 was characteristic for diterpene bases of the C-18 series esterified through hydroxyl group at C-4 (lappaconitine, sepacnitine, *N*-deacetyllappacinitine, etc), where the maximum peak corresponds to the ejection of a molecule of acid from the molecular ion. In the mass spectrum of compound 1, the peak of the (M – 179)⁺ ion was the maximum peak and corresponded, as in the mass spectrum of *N*-acetylsepaconitine, to the ejection of acetylanthranilic acid [12]. The IR spectrum showed of compound 1 showed absorption bands at 3492 (OH groups), 1700 broadened band, ester carbonyl, amide carbonyl), and bands at 1600, 1280, 1250, and 750 cm⁻¹ (1,2-substituted aromatic ring), 1083 (simple ether bonds). The ¹H- and ¹³C-NMR spectra of 6-dehydroacetylsepaconitine (1) exhibited a close resemblance to that of the known compound *N*-acetylsepaconitine (3) [12] except the presence of carbonyl group at C-6, instead of methylene group in compound 1.

The ¹H-NMR spectrum of 6-dehydroacetylsepaconitine (1) exhibited signals for N-ethyl, three methoxy groups and several methine protons with geminal oxygen substituents. In the down field region of the spectrum a doublet of one proton at δ 3.71 (7 = 4.8 Hz), characteristic for H-14. Triplet of three protons integration at δ 1.17 ($f = 7.0 \,\text{Hz}$), was due to the methyl of N-ethyl group. Similarly, in the down field region a triplet of one proton at δ 3.85 (f = 7.9 Hz), was assigned to the H-1, geminal to methoxy group. A broad singlet of one proton at δ 2.82 was assigned to the H-17, whereas, a broad singlet of one proton at δ 2.45, was assigned to the H-5, while, another singlet of one proton at δ 2.11 was assigned to H-7. The ¹³C-NMR spectrum (BB, DEPT) (Table I), showed thirty two signals, including five methyls, six methylene, eleven methine, and ten quaternary carbons. Comparing the ¹³C-NMR data of compound 1 with those of the reported compound N-acetylsepaconitine (3), (Table I), the appearance of a new quaternary carbon signal at δ 206.9, and the disappearance of CH_2 signal at δ 24.5, indicated the presence of carbonyl group at C-6. The ¹H- ¹³C correlation was determined by the HMQC spectrum,

Figure 1. Selective HMBC interactions in compound 1.

Figure 2. Selective HMBC interactions in compound 2.

while the long range ¹H- ¹³C connectivities were obtained through HMBC technique (Figure 1). The H-5 (δ 2.45) showed ² \mathcal{J} and ³ \mathcal{J} correlation with C-4 (δ 84.6), C-11 (δ 55.7), C-6 (δ 206.9) and C-17 (δ 61.5), whereas H-7 (δ 2.11), exhibited ¹ \mathcal{J} and ² \mathcal{J} correlation with C-6 (δ 206.9), C-7 (δ 46.8), C-8 (δ 74.5), and C-11 (δ 55.7), while, H-14 (δ 3.71), showed correlation with C-13 (δ 34.5), C-16 (δ 82.7).

Thus on the basis of above spectral data, the structure of compound **1** was deduced as 6-dehydroacetylsepa-conitine.

13-hydroxylappaconitine (2) was obtained as a white amorphous powdered, and was assigned the molecular formula $C_{32}H_{44}N_2O_9$, on the basis of HREI-MS (*m*/*z* 600.7003, calcd. 600.7012). The IR spectrum showed of compound 2 showed absorption bands at 3492 (OH groups), 1700 broadened band, ester carbonyl, amide carbonyl), and bands at 1600, 1280, 1250, and 750 cm⁻¹ (1,2-substituted aromatic ring), 1083 (simple ether bonds). The mass fragmentation of 2 is characteristic of alkaloids with aconitine skeleton. The ¹H- and ¹³C-NMR spectra of 13-hydroxylappaconitine (2) exhibited a close resemblance to that of the known compound *lappaconitine* (5) [13], except the presence of hydroxyl group at C-13, instead of methine group in compound 2.

The ¹H-NMR spectrum of 13-hydroxylappaconitine (2) exhibited signals for N-ethyl, three methoxy groups and several methine protons with geminal oxygen substituents. In the down field region of the spectrum a singlet of one proton at δ 4.32 was assigned to H-14. Similarly, a broad singlet of one proton in the down field region at δ 10.78 was assigned to the amide proton. Triplet of three protons at $\delta 1.03$ ($\mathcal{J} = 7.0$ Hz), was due to the methyl of N-ethyl group. Similarly, a double doublet of two protons at δ 3.21 (f = 9.0, 6.0 Hz), was assigned to the H-1 and H-16, geminal to methoxy group. A broad singlet of one proton at $\delta 2.45$ was assigned to the H-5. The ¹³C-NMR spectrum (BB, DEPT) (Table I), showed thirty two signals, including five methyls, seven methylene, eleven methine, and nine quaternary carbons. Comparing the ¹³C-NMR data of compound 2 with those of the reported compound lappaconitine (5), (Table I), the appearance of a new quaternary carbon signal at δ 78.1, and the disappearance of CH signal at δ 49.0, indicated the presence of hydroxyl group at C-13. The ¹H- ¹³C correlation was determined by the HMQC spectrum, while the long range ¹H-¹³C connectivities were obtained through HMBC technique (Figure 2). The H-5 (δ 2.45) showed correlation with C-4 (δ 84.6), C-11 (\delta 53.1), and C-6 (\delta 27.2), whereas H-7 $(\delta 2.11)$, exhibited correlation with C-6 ($\delta 27.2$), C-7 (δ 47.8), C-8 (δ 68.4), and C-17 (δ 58.0), while, H-14 $(\delta 3.71)$, showed correlation with C-13 $(\delta 78.1)$, C-14 (8 87.4), C-9 (8 79.2) and C-8 (8 68.4), Similarly, H-16 (δ 3.33) exhibited interaction with C-16 (δ 82.2), C-15 (δ 32.4) and C-13 (δ 78.1).

Thus on the basis of above spectral data, the structure of compound 2 was deduced as 13-hydroxylappaconitine.

Antibacterial activity: Compounds 1 and 2 showed significant antibacterial activity against

Staphylococcus aureus. Compound 3 showed significant activities against Salmonella typhi and Pseudomonas aeruginosa, while compounds 4 and 5 showed significant activity against Salmonella typhi and Pseudomonas aeruginosa (Table II).

Acknowledgements

We are thankful to Professor Mehboob-ur-Rahman for helping in the collection and identification of the plant.

References

- Atta-ur-Rahman, Nasreen A, Akhtar F, Shekhani MS, Clardy J, Parvez M, Choudhary MI. J Nat Prod 1997;56: 872–874.
- [2] Benn MH, Jacuno JM In: Pelletier SW, editor. Alkaloids: Chemical and biological perspectives., Vol. 1 Chapter 4 New York: Wiley; 1984. p 153.
- [3] Hertog MG, Feskens EJ, Hollman PC, Katan MB, Kromhout D. Lancet 1993;342:1007–1011.
- [4] Jacyno JM, Harwood JS, Lin N-H, Campbell JE, Sullivan JP, Holladay MW. J Nat Prod 1996;59:707.
- [5] Bisset NG. J Ethnopharmacol 1981;4:247.
- [6] Mhaskar KS, Blatter E, Caius JF. Ind Med Plants 2000;1:28.
- [7] Baytop T. Theraphy with Medicinal Plants in Turkey (Past and Present) Istanbul University, Publication No. 3255 1984.
 p 187.
- [8] Pelletier SW, Aneja R, Gopinath KW. Phytochemsitry 1968;7:625-635.
- [9] Pelletier SW, Abdel MMA, Janet FM, Naresh VM, Lee CS. J Nat Prod 1982;45(6):779–781.
- [10] Jacobs WA, Craig LC. J Biol Chem 1942;143:605.
- [11] Jacobs WA, Craig LC. J Biol Chem 1943;147:571.
- [12] Telnov VA, Yunusov MS, Abdullaev ND, Zhamierashvili MG. Chem Nat Compounds 1989;24(4):472–475.
- [13] Ulubelen A, Merely AH, Mericli F, Kolak U, Arfan M, Ahmad M, Ahmad H. Pharmazie 2002;57(6):427.